12 P. Sosnin
Question-Answer Programming in Collaborative Activity Environments 11

Question-Answer Programming in Collaborative Activity Environments
P. Sosnin
Ulyanovsk state technical university, Ulyanovsk, Russia
e-mail: sosnin@ulstu.ru
Abstract. In this paper a number of question-answer means for implementing the human-computer interaction is suggested. Question-answer means are arranged as a specialized processor opening the possibility of the question-answer programming of the tasks in the Collaborative Activity.

1 Introduction

Nowadays the most problematic area of computer applications is “Collaborative Development Environments”, within the frame of which the collaborative works of developers and other stakeholders are being fulfilled in corporate networks.
The usage of Collaborative Development Environments (CDEs) is estimated as a promising way for increasing the level of a success in the human-computer activity. Such type of environments was defined by G. Booch in [2] where the place and role of communication means for the collaborative work were underlined and generally specified. Details of CDEs and their current state are presented in [2] and the most part of details is connected with communicative interactions of stakeholders in real time solving the tasks which are common for them.

It is possible to use a set of typical specifications of the CDE as a template for comparing the different technologies for the development of the Interactive Systems (IS) and for finding the ways for their evolving. In our opinion one of such ways is “a real time integrating the intellectual resources” which can help to developers in solving the complicated tasks. The intellectual potential of any developer is limited and developer often needs the help for the work with appointed tasks from useful intellectual sources. The base of such help is the reasoning of colleagues.

This article concerns the problem-solving and decision-making of the complicated tasks the work with which is being fulfilled in the CDE-system supporting the question-answer modeling of collective reasoning. The CDE-system is implemented as processor in corporate network which gives the possibility for question-answer programming of human-computer interaction with necessary objects and processes The CDE-system is implemented as processor in corporate network which gives the possibility for question-answer programming of human-computer interaction with necessary objects and processes in any time of the collaborative activity (including the usage stage of the developed systems). Therefore such CDE-system is named as Collaborative Activity Environment of Question-Answer Type (or shortly QA CAE).
2 Related works

The problem of rational reasoning in the collaborative development process of the IS is well known. This problem has been investigated for more than 10 years in the Software Engineering Institute (SEI) of Carnegie Mellon University [1]. But the question-answer approach is not used and the problem of “a real time integration of intellectual efforts” is not indicated in interests of the SEI to the schemes of reasoning and their formalizing.

We are convinced that investigation of question-answer reasoning is a perspective way for finding the AI means which can give the positive results helping to solve complicated tasks and not only in designing the IS [13].

In the number of relative works using “questions and answers” (or QA), for example, we can mention reasoning in the “inquiry cycle” [8] for working with requirements, “inquiry wheel” [9] for scientific decisions and “inquiry map” [11] for education. Similar ideas are used in the special question-answer system which supports development of the IS [4]. The typical schemes of reasoning for the IS development are presented in [1], in [10] reasoning is presented on seven levels of its application together with used knowledge and in [7] model-based reasoning is presented as useful means for software engineering.

But in all publications referred to above, the issue [3] and the special report [5] the task of real time integration of the intellectual resources in processes of problem-solving and decision-making is not mentioned. Interpretation and representation of the QA-reasoning with viewpoint of programming are absent also.

3 Question-answer models

We suggest using the QA-model for simulating collaborative reasoning in any state of the decision process for operative including such kind of models into the intellectual activity of the developer appointed to the task. The QA-model which reflects collaborative reasoning in the frame of the definite task Z(t) we shall name as the QA-model of this task (or shortly QA(Z(t))). The QA-model of the task is a model of collaborative reasoning (and integrated consciousness) in the real time process of solving the task.

The QA-model is a systematized representation of reasoning used during the solution of the task Z(t) and kept in the special QA-database. Any QA-model is a set of interactive objects such as “question”, “answer” and “task” with the certain attributes and operations.

Therefore specifications of the QA-models will be presented from the interactive system viewpoint or another words as specifications of a specialized software interactive system ISQA. Such position gives the possibility to use the experience of the IS to the ISQA first of all the experience of the architectural description. We defined and investigated the QA-model of the task which is architecturally presented in Figure 1.
[image: image1.wmf]

Motive

-

object

Intellectual

-

organizing

Experience

Communicative view

Training

Theoretical

Documenting

Diagramming

Problem

-

oriented

Normative

Eve

nt

Ontology view

Activity

Task view

Logical

-

linguistic view

The set of typical tasks of RUP

Working examples of QA

-

models

Figure 1. Architectural description of QA-model
Question-answer models, as well as any other models, are created “for extraction of useful answers to the questions enclosed in the model”. Any QA-model is adjusted to solving the corresponding task. In general case the QA-model must support the useful answering process for solving the main task of conceptual designing the IS. Therefore the typical structure and content of the QA-model were being chosen and defined for general case of the task the role of which fulfills the set of typical RUP-tasks used by designers on the conceptual stage of the RUP-application. Such decision is being explained that the RUP is the richest source of typical tasks the utility of which is being confirmed by practice. Conceptual means of the RUP help to build and express the conceptual solution of any task in development of the IS.

The typical QA-model is used as a template and as a complex of means for creating the example of the QA-model for any task in designing the IS. The typical QA-model (or by another words the specialized ISQA) is constructed as the CDE-system which supports the collective work with tasks in the frames of following architectural views.

The logical-linguistic view presents QA(Z(t)) within frames of logic and linguistics of questions and answers. The visual representation of the view (Figure 2) includes a system of QA-protocols corresponding to the task tree of Z(t). Each QA-protocol is a tree of questions and answers (QA-tree) which presents the reasoning used in the decision process of the corresponding task. Any question or answer in any QA-protocol is a result of translating the definite volume of natural reasoning about “question” or “answer”. In general case any task Z can include subordinate tasks.

[image: image6.png]dopMupoBaHne
6a3bl 3HaHWi

OB BACHEHUs!

PaGoyas
namsTe

BOMPOCHO-OTBETHAA CPEAA

Figure 2. System of QA-protocols
The logical part of the view describes the hierarchical tree of questions and answers. Each “question” or “answer” is being modeled as an interactive object with the unique name and rich visual presentation. The QA-tree as a whole consists of the main QA-tree (corresponding to the task Z(t)) and a set of subordinated QA-trees for subordinated tasks.

The linguistic part of the view includes a system of texts presented as the informational content of questions and answers. The text of each unit of the view is a result of the QA-formalization which is applied to the definite volume of reasoning at the natural language.

Dynamics of the view reflects the history of reasoning registered by step-by-step as the history of each unit of the view. Therefore the logical-linguistic view was named as the “QA-protocol”.

The task view opens the model QA(Z(t)) as an interactive task tree including the interactive model of Z(t) with models of all subordinated tasks. “The task” is a type of “the question” and therefore it is subordinated to the used understanding of “questions”. But the interactive object which presents the task in ISQA is opened for the interaction through the special set of commands one of which is “To open task as its QA-model”. In general case the task tree is a tree of all project tasks combined in the task Z* of designing the IS. The task is a based unit for structuring the process of designing and for question-answer modeling (QA-modeling).

The example of the visual integration for the task view and the logic-linguistic view is shown as the real screenshot in Figure 3 where any label of the task or the question or the answer can be used for the interactive access to the other parts of the chosen interactive object. The example also visualizes the structure of the QA-protocol connected with the chosen task in the task tree. Here is shown that the picture can be attached to any unit of the task tree and the QA-protocol.

[image: image2]
Figure 3. Relation between logic-linguistic view and task view

Other views of the QA-model are described in details and particularized in [12]. They usefulness for QA-programming can be concerned below.

4 Question Answer Model of Data

The QA-model of data with very useful characteristics has been suggested and developed in researches of QA-models of tasks. An abstract example of such model of data is presented schematically in Figure 4.
[image: image7.jpg]5 BUKA (kvenTckoe mecTa)

e vivere i St e N, N v 2
EELY| @ e Gan Dol

1 Paspatorka Tectos
21, 1173 KOHCTPYCTEHOT BKI0%eHA 5 PO,

3 Paspatorka ofiymouero kypca

31 Qevoersie normn

7 32 Teopua yonosre pecrexcos

33 Uensean Teop MoTeawM

34 Mpyao-cnencTesHble OTHOWEHA Tpe
35 Mpyao-cnencTEeHHeI noTEHEN, Co5.

36 MeTogs: u cpencTea onepaTHenoro Gopi
3.7 Bopocro-oresthe npoueceop Netwila,

Texer caaaie | Heproo Broxerua_Knoicesis croea

22 Uro nomwaasTos nos moTvBaUeH rpunISL
22.1 Mo morwsauerpynis nposkTHpoBLM
0 22.1 Paspatorar cucTemy MeTonos 1 cpe
© 222 0ecnewms ucranosenve FoH B34
23Uro cosTanaeT conepKaHE MPUAHO'T.
24 Kaxoi sxnan & mpouece npoekTHpOBaHA
. 241 KoHeTpuKTvieHoe Bosetie © npouece.
25 KaKoi skna 5 peaynerar nposTipoBan
4 251 KoHCTpUKTUBHOS BK10HerE B peayni.
26 Uro cosTanaeT conepKaHE MPUAHOT.
27 Kaxoi sxnan & Mpouece npoekTHpOBaHA
28 KaKoi skna & peaynerar nposKTHpoBan L
281 KoHeTpuxTveHoS BX0HerE B peayni.
29 Uro nomwmasTa nog MOTHEAWOHH S
291 B KaHeCTSE MOTHBUHOHO UEAEB0/ 10
210 410 Guger x0T & KomTAEKS MeTORO.
211 410 Guger x0T & KomMAEKS MeTORO.

3 211.1.1 B séw sawniosasTos meTomuka dopm
2 211.1.28 s sakniosasTos MeTORKa Sop
2 211.1.3B wew saKnosaeTo weTomka anan

%' © 21111 Pacpascrars cuctemy kpiTepues c.
£ 211.1.2 Paspaiarars HHCTRUMEHTATSHER 2.

212 410 Guer sromye & KownneKe cpecT.

213 410 Guger sromy & KownneKe cpecT.

214 Urn evuniserra nin s coencrs

77 /070831017 MOTHBUHORHO U561 MORE TSR CORTORA TPOSKTa GUUT VoToTe08ar o
oL METORUKE METORUKS POPMHPOBHA CUBHOTEIM MOTHEOS U Ueel, METORKa
$OPMIApOEHI NPOTOTHNIOS Sa34, METORMK BHBMS3 MPORYKUHOHHL METaMORSTSH 3303,

Oprerpycryp

Bompocroorsemmiinpororon | | Bonpooriorsenint nporoxon | | _Bonpoonocrserremtmperoron T %] mocrymsie nnaraen
e

oain Mpaewa Jofaeus oieproreoaeweposcreessyio Acnanwmensia e s

=P TIoRGHCTEMa MOTUBAUHGHH USAEB0rD H NPHAVHHO-CABACTEEHHG MRSAMPOBaHHA 21 7o norMaeToR s onon Fpynre! ipo.]

Vgopationele HETOM
Oimonana
Opramsauonan cTpycTipa
Moacucrena auaira
Mouroeai cepee

Paawii Croaps

Peascrop XML

Pearop avarpana

e 4 ey

Uasonei nposrros

[image: image8.png]

[image: image3.wmf]

B

Q

1

Q

2

Q

n

Q

N

A

1

A

2

A

n

A

N

t

Figure 4. Structure version of QA-data

The model consists of hierarchical set of pairs of records representing questions and answers and a set of operations with them. Hierarchical relations between pairs of records express cases when question includes subordinated questions.

In general case the QA-model of data consists of the part presenting the task tree and the part which includes the QA-protocol for each task of this tree.

The example of the visual integration for the task view and the logic-linguistic view is shown as the real screenshot in Figure 5 where any label of the task or the question or the answer can be used for the interactive access to the other parts of the chosen interactive object. The example also visualizes the structure of the QA-protocol connected with the chosen task in the task tree. Here is shown that the picture can be attached to any unit of the task tree and the QA-protocol.

The relational model of data (database) was used for creating the QA-model of data. First of all the QA-model of data helps to build the QA-database supported the development of the SIS. Such database has the following useful characteristics:

· allocation on server with client access to the content of data in the corporate network with an opportunity of access from the Internet;

· usage of automatically generated index's names which can be used for addressing;

· textual definition Q or A with an opportunity of transformation to the language of logic of predicates;

· automatic registration of changes with preservation of the changed versions;

· personification of A or A-units as registration of the responsible designer and group of "support";

· visualization on the screen of the monitor with the possibility of interactive access to the corresponding objects;

· opportunity of the announcements of subtypes for the Q or A-units;

· opportunity of use of inheritance;

· creation and representation of the hierarchical set of pairs groups, including such groups by which the status of "integrity" can be attributed;

· transformation to the XML-version with positive effects which are being achieved from such form of data.

Enumerated positive characteristics are only a part of value belonging the QA-databases which can be used not only in the development of the SIS. Moreover, it is possible to spread the interpretations of the pair connected records by the following ways:

· “question” (” cause” and “answer” (“sequence”;

· “question” (” condition” and “answer” (“reaction”.

Named interpretations and their materializations are opened new approaches for programming the Expert systems and systems which are based on rules. Therefore the complex of specialized means have been developed for supporting the work with the QA-database and for programming the applications on such database.

Let us continue to present the other versions for interpreting the QA-model of data:

· “question” (” name of the variable for the simple type of data” and “answer” (“its value”;

· “definite composition of questions” (” typical data” (for example array, record, set, array of records or table, stack, queue and others types of composite data) and “corresponding composition of answers” (“its value”.

So the QA-model of data can be used for emulating the data of many known types. Therefore a number of specialized means have been developed for supporting the work with the QA-database and for programming the applications on such database. It is necessary to notice that the unique index names of questions and answers can be used for addressing the simulate data as a whole and parts of the composite data.

5 Question-Answer Programming

The potential opportunity to create useful samples of interactive objects such types as “task”, “question” and “answer” and existence of means (QA-processor) for their combination and linkage has led to the decision to implement the creation of such objects, their assembling and using in the form of programming.

For such decision there are sufficient bases which include the following arguments:

1. The named objects are implemented in the QA-processor as a set of specialized types of data with corresponding operations.
2. QA-coding of reasoning R(Z) is being fulfilled in the process of the definition of the task and construction of the conceptual scheme for its solution.

3. The decision of task Z materialized in the form of QA(R(Z)), is open for its useful application in the environment of the QA-processor, including reuses.
In order to evolve QA-means for their usage in accordance with programming the emulation of data must be added the emulation of action means. For simulating the basic program operators the next constructions can be used:

· Appoint: “question” (”name of variable” and “answer” (“appoint the value;

· Goto:“question” (”condition” and “answer” (“goto the definite operator of QA-program;

· Command: “question” (” the command of the QA-processor” and “answer” (“execute the command”;

· Function: “question” (”definition of function” and “answer” (“compute the value”;

· Procedure: “question” (”definition of procedure” and “answer” (“execute the procedure”.

· End: “question” (”end of program” and “answer” (“finish the work with QA-program”;

In named operators the following definitions of functions and procedures are used:

· any function is defined as the expression of algorithmic language;

· any procedure is a typical sequence of actions which are accessible in QA-processor for the execution by the user.

All suggestions for simulating the programming by the usage of instrumental QA-means can be defined with grammar which uses the following basic BNF-rules:

[image: image9.png]

Other grammar rules which are opening the idea of QA-programming, are presented in this article implicitly. Other grammar rules which are open the idea of QA-programming, are presented obviously in this article. It is necessary to notice, that the grammar description can be used as the definition of the QA-program.

A number of versions of behavior can be used for the execution of QA-programs each of which is being fulfilled as one of the following forms of QA-modeling:

1. The real time interaction of the person solving the task Z (or similar inquiries of any other persons) with any fragment of the QA-program in any state of its readiness;

2. The interaction with the program QA(R(Z)) controlled by a technique chosen from the library of techniques where each of them is materialized in the form of the QA-program;

3. The human-computer execution of the technique chosen from the library mentioned above.

In any version of interaction its acts are caused by activity context which is subordinated to the basic purpose - to solve the task Z. For achievement of such purpose the subject solving the task, interacts with its QA-model allowing him to use (in construction of the decision) combination with objects of the types “task”, “question” and “answer”, selecting suitable objects and connecting them in “the conceptual decision of the task Z”.

6 Examples of QA-programs

In working with QA-programs it is necessary to discriminate their declarative parts (question-answer blocks), the procedural components (techniques of interaction with blocks, each of which is visualized in a question-answer form) and interpretation (execution of QA-programs).

The declarative part of QA-program is similar on the declarative part of traditional computer program. It includes for any QA-program the description of QA-data and used functions. But the declarative part can play the role of a QA-program as a whole. For example QA-program for task of creating any document include only description of QA-data the value of which are formed during the solution of task. The fragment of such task is presented in Figure 5.

[image: image10.png]

Figure 5. Template of the Use-Case Document

More complicated Execution of the declarative QA-program of the presented type is fulfilled as appointing the value in answer positions for each question as variable of QA-program. The other form of the execution is a visual interaction with the content of the QA-program or its parts.

More complicated version of the declarative QA-program includes the description of the function. The example of such program which fulfills the computing the result of estimation by the group of experts, is presented in Figure 6.

[image: image4]
Figure 6. QA-program for the expert estimation

The presented QA-program suggests the computing of the middle-weight sum. Therefore the execution of the similar QA-programs requires interpreting the function on the level of its executing program code. Such possibilities are supported in the QA-processor by special means of dynamic interpretation and compilation with using C#. The access to the result of expert estimation is implemented with using the unique address of the Value of The Expert_Mark (as value of variable) in the general task tree of the application which is used the QA-program for the estimation. The heading and the statement of problem for any QA-program is registered in its corresponding task-unit.

The other example of the declarative QA-program is presented in Figure 7. This QA-program presents the “condition” of the precedent which normatively regulates the behavior of the sea vessel in the situation of crossing the movements of two vessels. It presents for orientation without descriptions of names.

[image: image11.png]

Figure 7. Fragment of the QA-program presented “condition”

This example demonstrate the usage of the function with logical value and indicates the global variables. One of the variables indicates the name of the QA-program which is needed to execute if “condition” has value “ truth”. It is necessary to notice that any variable which is used in any QA-program, is accessible outside the QA-program through its unique addressing name.

Procedural QA-programs can be defined and used independently or additively with declarative QA-programs. The QA-procedures are played the main role in such QA-programs. The example of the procedural QA-program is presented in Figure 8.

Figure 8. Fragments of the service technique “Argumentation”

Each operator of the procedural QA-program is presented as a pair “Q and A” where a part “Q” indicates the content of the action and a part “A” indicates the fact of execution for this action (“*” – “yes” and “#”– “No”). The new symbol “*” is added to the part “A” if operator is executed repeatedly.

 It is necessary to notice that the role of operator can be fulfilled by the appropriate procedural QA-program. In this case the process of interpretation will be interrupted and the user will activate the called QA-program. Moreover, for the rational work with procedural QA-programs their actions are divided on procedural blocks each of which includes the sequence of actions which is useful for returning to the interrupted operators.

The QA-processor suggests to the designer many different types of the QA-commands, plug-ins and techniques used in designing with the help of QA-modeling. Any designer has the possibility for using a set of normative QA-techniques for designing, decision-making, communicating, documenting and training.

7 Conclusion

This paper presents the system of means for question-answer interactions in collaborative activity environment. For such aim the system of QA-means similar to the CDE-system is suggested. This system (named WIQA) is investigated and implemented as the QA-processor in a number of versions. The QA-processor supports creating the QA-programs for tasks of many types.

The QA-programming is a technique of a conceptual solving the task. The QA-programming gives the possibility to program the human-computer interaction in real time with task being solved. Step by step the solver or their group creates new “points” of interaction on the visualized model of the task promoting the solution of the task to the final result.

The QA-program of any task is its conceptual decision representing the combination of “questions” and “answers” which are created and/or selected (and are adapted if necessary) in acts of interaction with accessible experience and/or accessible models of experience according to the specificity of the task.

Proposed means have confirmed the practical usefulness in development of a number of the IS, including “Automated system for planning of cargo transportation”, “Expert monitoring of vessel surrounding” and “Automated system for management of distance education”.

References:

1. Bass, L., Ivers, J., Klein, M., Merson, P.: Reasoning Frameworks. Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, Tech. Rep. CMU/SEI-2005-TR-007 (2005)

2. Booch G. Collaborative Development Environments. architecture/ blog.jsp?part=paper.
3. Burger, J. et al.: Issues, Tasks and Program Structures to Roadmap Research in Question & Answering (Q&A), Tech. Rep. NIST (2001)

4. Henninger, S.: Tool Support for Experience-Based Software Development Methodologies. Advances in Computers, vol. 59, pp. 29-82 (2003)

1. 5. Hirschman, L., Gaizauskas, R.: Natural Language Question Answering: The View from Here. .Natural Language Engineering, vol. 7, pp. 67-87 (2001)
5. Kroll P., Kruchten, Ph.: The Rational Unified Process Made Easy: A Practitioners Guide to the RUP. Addison-Wesley (2003)
6. Lee, M.H.: Model-Based Reasoning: A Principled Approach for Software Engineering. Software - Concepts and Tools,vol.19, #4, pp. 179-189 (2000)
7. Potts, C., Takahashi, K., Anton, A. Inquiry-based Requirements Analysis. IEEE Software, vol.11, #2, pp. 21-32 (1994)
8. Reiff, R., Harwood, W., Phillipson, T.: A Scientific Method Based Upon Research Scientists’ Conceptions of Sci​entific Inquiry. In Proc. Annual International Conference of the Association for the Education of Teachers in Science, pp 546–556 (2002)
9. Rich, C., Feldman, Y.: Seven Layers of Knowledge Representation and Reasoning in Support of Software Development. IEEE Transactions on Software Engineering, vol, 8, # 6, pp.451-469 (1992)

10. Rosen, D.J.: How to Make Inquiry Maps”. Available at: http://alri.org/pubs/im3.html (2008)

11. Sosnin, P.: Question-Answer Means for Collaborative Development of Software Intensive Systems. Complex Systems Concurrent Engineering. Part 3, Springer London. , pp 151-158 (2007)
12. Yang, F., Shen, R., Han, P.: Adaptive Question and Answering Engine Base on Case Based and Reasoning Technology. Journal of Computer Engineering, vol.29, #11, pp. 27-28 (2003)

[image: image5.png]

Q1. Activate plug-ins “Communication””?

A1. *.

Q2. Chose the task “Justification”?

A2. *.

Q3.Chose the necessary QA-unit in the list of messages ?

A3. *.

Q4. Chose line “” in the context menu “Argumentation”?

A4. #.

Q5. If the new argument is needed to add

 then Goto the operator 11?

A5. #.

………………………………………………………………..

Q11. Press the button “Add new argument as a text unit?

A11. #.

………………………………………………………………

Q29.End?

A29. #.

Q0. Danger:Has1(V_1, VPD1) & Has1(V_2, VPD2) & Has2(V_1,place_1) & &Has2(Vs-2, place_2) & Has3(V_1, bear_1) & Has3(V_2, bear_2) & & Has4(V_1, vel_1) & Has4(V_2, vel_2)& Has5(V_1, “keep out of the way”) & & (bear_1 – bear_2 > 11, 5о) & (CPA- DDA - (D1 ≤ 0)(Manoeuvre_Mi?

A0. Value of Danger, Manoeuvre Mi.

Q1. Velocity VPD1 of the vessel V_1?

A1.Value of VPD1?.

Q2. Place of the vessel V_1?

A2. Value of the place_1.

…………………………………………………………..

End

Q0. Expert_Mark: (Mark_1+ Mark_1+…+ Mark_1) / N?

A0. Value of the Expert_Mark.

Q1. Mark_1 of the Expert_1?

A1.Value of the Mark_1.

Q2. Mark_2 of the Expert_2?

A2. Value of the Mark_2.

…………………………………………………………..

QN. Mark_N of the Expert_N

AN. Value of the Mark_N.

End

………………………………………………………….

Q2. Actors?

A2. The external persons and systems cooperating with the system being designed.

Q2.1 Primary Actors?

A2.1.Persons and systems who and which will initiate interaction, will use functions of system for the decision of the task and will receive valuable result (useful effect) from this interaction.

Q2.2.Interested persons?

A2.2. Persons and systems, whose interests consider, protect and satisfy in system being designed.

Q2.3.External events initiating any processes in the system being designed.

Q2.4. Assistants?

A2.4. Persons who are used by the system.

Q2.5. Why the given actor cooperates with the system?

A2.5. Under own initiative or how the intermediary, the representative of another.

Q3. Precedents - variants of use of the system by actors?

Q3.1. What task is solved by the actor with help of the system?

A3.1. The name of the first precedent?

…………………………………………………………………..

<QA-program>:: = <Heading> <QA-code> .

<Heading>>:: = <Name> <Statement of a problem>.

<QA-code>:: = <QA-operator> │ <QA-code> <QA-operator>.

<QA-operator>:: = <Appoint> │ <Goto> │

 		 │ <Function> │<Procedure> │ <End>.

<Function>:: = <Name> <Expression>.

<Procedure>:: = <Name><Sequence of actions> │ <QA-program>.

Service and informational fields

�

Picture

Other

QA-protocol

QA-protocol

Task tree

Plug-ins

Person responsibility

Text expression

 (can be edited)

�

QA-protocols of the service tasks

Qpr

Qp2

Ap

Qp

A2

Q

Apr

Ap2

Ap1

A2n

A22

A21

A1m

A12

A11

A1

Q1

Q2

Q21

Q22

Q2n

Qp1

Q1m

Q12

Q11

�

�

�

�

QA-protocols of the subordinated tasks

Main QA-Protocol

